Properties of the segmented prime spirals.
1. Abstract.

The segmented prime spirals is a way to visualize the distribution of prime numbers amongst a sequential set of natural
numbers. The segmented prime spiral consists of segments of sequential natural numbers, who together with the other
segments form a continuous spiral of natural numbers. There are infinitely many segmented prime spirals.

In the segmented prime spirals the prime numbers have the tendency to line up along specific odd diagonals, while other
odd diagonals hardly contain any prime numbers.

The Ulam spiral, as discovered by Stanislaw Ulam in 1963, is a special seqential prime spiral and has four segments.
2. Mathematical properties of the segmented prime spiral.

The counterclockwise prime spiral with startvalue 0 and m segments is fully defined by the (2m + 1) families of
quadratic functions f,;.(n) = an® + bn + ¢, with ne No, me N, a=m, —a<b<a with be Z, and

ce Z; if b=a
ce Z if —a<b<a
ce Z* if b=—a
For b =a the function f,, . (n) = an® + bn + ¢ becomes Jabn) = an’ +an + c.
The translation n > n — 1 then gives the function f,, (n) = an® —an + ¢ and thus Japen)= an® - bn + c.
The functions f,;, (n) = an®* +bn+c and Supen) = an®> —bn + ¢ give equal results, but for the translation n > n — 1.

Fig 2.1 shows an example of a counterclockwise prime spiral with five segments. The startvalue O is in the center of the
spiral, with the value 1 a single step due east.

The lines belonging to the functions f5,0(n) = 5n* + bn + 0 contain no prime numbers > p,.
The diagonal f5_5,(n) = 5n* = 5n+ 1 with the sequence {1, 11,31, 61, ...} appears to be rich with prime numbers.
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Fig. 2.1: A counterclockwise prime spiral with startvalue 0 and five segments.
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3. The Ulam spiral as prime spiral with four segments.
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Fig. 3.1: The Ulam spiral and the eight families of functions.

Fig. 3.1 shows the counterclockwise Ulam spiral with startvalue 0 when placed in a Cartesian coordinate system.
All natural numbers in the spiral are completely captured by eight families of quadratic functions. The SE diagonal is
defined by the family of functions f.(nsg) = 4n* + 4n + ¢, or the more general function fy4.(n) = 4’ + 4n + ¢,

The counterclockwise Ulam spiral with startvalue 0 is a four-quarter Ulam spiral, and thus a prime spiral with four
segments. Per definition of the segmented prime spiral the Ulam spiral is defined by nine families of functions.

Clearly visible is the discrepancy when counterclockwise crossing the SE main diagonal. For positive values of ¢ the
SE diagonal becomes the function f; _4.(n) = 4n® —4n + c. Using the function f.(nsg) = 4n” + 4n + ¢ instead for all SE
diagonals gives almost identical results.
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4. Prime spirals with three segments.
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Fig. 4.1: A prime spiral with three segments based on the Ulam spiral.

The segmented prime spirals are an offspring of the Ulam spiral.
The counterclockwise Ulam spiral with startvalue O is a four-quarter spiral, and thus a prime spiral with four segements.
Downwards is the prime spiral with three segments, which can be visualized as a three-quarter Ulam spiral (fig. 4.1).

For the counterclockwise prime spiral with three segments, the general families of functions f,; (1) = an* + bn + ¢ thus
become f3,.(n) = 3n* + bn + ¢. When using the compass rose, the value of b is synonymous to the winddirection.
Almost each function f,, (1) = an® + bn + ¢ appears as a horizontal, vertical or diagonal line only at a higher 7.

For instance the sequence {43, 67,97, 133, 175, 223,277, ...} of the function f;(ngsg) = 3 -3n+7 (also known as
Sfr-32(n) = 3 =3n+7) starts at n =4 and thus as part of the function f(n) = 3%+ 21n +43.

The function f; (ngw) =3n” +3n + ¢ with ¢ € Z; is separted from the function f; (nse) = 3n* =3n+c with ce Z*.

Within the families of functions f; (ngsg) = 3 +3n+c and Solnsw) = 3 -3n+c, every third odd diagonal,
like {15,33,57,87, ...} and {9, 21,37, 63, ...}, contains no prime numbers. For 3 |c applies 3| f; .(nsg) = 3 - 3n+c.
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4.1. Coordinates of a natural number in the counterclockwise three-quarter Ulam spiral.

When the counterclockwise prime spiral with three segments is presented as a three-quarter Ulam spiral in a Cartesian

coordinate system, it is possible to calculate the (x, y) coordinates of any natural number g.
The technique is the same as applied in the counterclockwise Ulam spiral with startvalue 0.

Define m= g /3 with me Ry and n=| m | with ne N,.

The value m —n determines the sector in which g lies, see the table below.

m-n Sector Function ( x y)
Sle<m—n <= E frelng) =3n*=2n+c ( n ¢)
Yg<m=-n < N frelny) =30 +0n +c (-, n)

1/6 <m-n< 3/6 w frclny) = 3 +2n + ¢ (—c, n)

In the next table are the positions of some natural numbers from the segmented prime spiral of fig. 3.

Calculations specifically make the natural number 270 a member of the function f3o(nw) = 3n> + 2n + 0 and not the

function f;o(ng) = 3n* = 2n + 0, which complies with the definition of the families of functions.

g m n Function c (x, y)
270 9.486... 9 frelnw) =30 +2n+c 9 (-9, 9)
271 9.504... 10 frelng) =3n*-2n+c -9 (10, -9)
290 9.831... 10 frelng) =3n*-2n+c 10 (10, 10)
291 9.848... 10 frelnn) =3n*+0n + ¢ -9 (9, 10)
311 10.181... 10 frelnw) =3n*+2n+c -9 (-10, 9)
330 10.488... 10 frelnw) =30 +2n+c 10 (-10,-10)
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4.2. Other graphical representations of the prime spiral with three segments.

The Ulam three-quarter spiral (fig. 4.1) becomes a continuous spiral (see fig. 4.2) when the prime spiral is folded together.
Clearly visible is the translation n > n— 1 at the original seam.
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Fig. 4.2: A continuous prime spiral with three segments.
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The Ulam three-quarter spiral (fig. 4.1) becomes a continuous spiral (see fig. 4.3) when the prime spiral is presented as a
hexagram. There is now a seemingly seamless transition from the function f; (nsw) = 3n* +3n+c¢ with ce zZ, into

the function f; (nsg) = 3n” —3n+c¢ with ce Z~.
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Fig. 4.3: A hexagram representation of a continuous prime spiral with three segments.
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5. Prime spirals with two segments.
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Fig. 5.1: A prime spiral with two segments based on the Ulam spiral.

In fig. 5.1 the prime spiral with two segments is visualized as a two-quarter Ulam spiral. For the counterclockwise prime
spiral with startvalue 0 the general families of functions f,, (n) = an® + bn + ¢ thus become Srpo(n) = 202+ bn + c.
When using the compass rose the value of b is synonymous to the winddirection.

Almost each function f,, .(n) = an* + bn + ¢ appears as a horizontal, vertical or diagonal line only at a higher n.

For instance the sequence {61, 83,109, 139, 173, 211, ...} of the function f,(nng) = 2 +0n + 11 (also known as
Sroa(n) = 20 +0n+11) starts at n =35 and thus as part of the function f(n) = 21 + 201 + 61. The function appears to
be rich with prime numbers.

The function f, (nnw) = 2n% +2n +c¢ with ce Z, is separted from the function f, (nsg) = 2n* =2n+c¢ with ce Z*.

For any natural number g in the prime spiral with two segments the coordinates in the Cartesian coordinate system can
be calculated through the families of functions. Define m = /g /2 with me Ry and n= L m 1 with n e N.

The value m —n determines the sector in which g lies, see the table below.

m-n Sector Function ( x, y)
< m-n <0 E frelng) =2n" = 1n+ ¢ ( n, ¢)
0<m-n<W% N folny) =20 + In + ¢ (-c, n)
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Prime spiral with two segments: definition of special factorable functions
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Fig. 5.2: Special factorable functions in the prime spiral with two segments.

Fig. 5.2 shows the special factorable functions that contain no prime numbers > p,.
The function f,_(ny) = 2n* + 1n — 1 for instance, can be written as Hoi(nn) =C2n—-1D(n+1).

When prime rich functions like f5,9(nng) = 202 +0n +29 or fro(nsg) = 2n% = 1n + 19 intersect with special factorable

functions, natural numbers on the intersections are composite numbers.
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5.1. Other graphical representations of the prime spiral with two segments.

The Ulam two-quarter spiral (fig. 5.1) becomes a continuous spiral (see fig. 5.3) when the prime spiral is folded together.
Clearly visible is the translation n > n— 1 at the original seam.
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Fig. 5.3: A contiuous prime spiral with two segments.
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The Ulam two-quarter spiral (fig. 5.1) becomes a continuous spiral (see fig. 5.4) when the prime spiral is presented in a
diamond shape. Still visible is the translation n > n — 1 at the original seam.
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Fig. 5.4: An other representation of a continuous prime spiral with two segments.
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6. Prime spirals with one segments.
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Fig. 6.1: A prime spiral with one segment based on the Ulam spiral.

In fig. 6.1 the prime spiral with one segment is visualized as a one-quarter Ulam spiral. For the counterclockwise prime
spiral with startvalue O the general families of functions f,, (1) = an® + bn + ¢ thus become f,,,.(n) = 1n* + bn + c.
When using the compass rose the value of b is synonymous to the winddirection.

Almost each function f,,.(n) = an* + bn + ¢ appears as a horizontal, vertical or diagonal line only at a higher n.

For instance the sequence {41, 53, 67, 83, 101, ...} of the function f; ;i(nsg) = 17— 1n+11 (also known as

Si-in(n) = 1= 1n+ 11) starts at n =6 and thus as part of the function f(n) = n* + 11n + 41. The function appears to
be rich with prime numbers.

The function f; (nng) = 1n* + 1n + ¢ with c e Z, is separted from the function f; (nsg) = 17" = 1n+c with ce Z*.

When the graph is folded into a cone, with a shifted overlapping edge, it becomes a continuous spiral.
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Fig. 6.2: Special factorable functions in the prime spiral with one segment.

Fig. 6.2 shows the special factorable functions that contain no prime numbers > p;.
For instance the function f; _;(ng) = 1n* + On — 1 with ¢ =—k* = —1, can be written as f; _;(ng) = (n — 1)(n + 1).

The function fi 4;(nsg) = 1n* — 1n + 41 is also known as Euler's famous formula for prime numbers n—n+41.
When this prime rich function intersects with a special factorable function, the natural number on that intersection is a
composite number, see fig. 6.2.

A function value f(n) is composite if f(n) = d, * dg with d, | f(n), ged (f(n),d)>1 Vd, e {dy, dg)

If d, is adivisor, then d, | f(n+dy*k) and dk)= f(n+ds*k)/dy with ke Ny. Alsoif dp is a divisor, then
dg | f(n+dgek) and ds(k)= f(n+dg*k)/ds. When dy(k)=dp(k) the divisors generate new composite function
values via a single pattern instead of a double pattern, see point a in the table below.

# | fiaa@®) = 1 -1n+41 Coordinate Pattern divisor A | Pattern divisor B
a | fiqa@)= 1681 = 4141 A (41, 0 n=41+ 41k n=41+ 41k
b | fisia(d2)= 1763 = 41+43 B (42, -1) n=42+ 41k n=42+ 43¢k
¢ | fisia(45)= 2021 = 4347 C (45, —4) n=45+ 43k n=45+ 47k
d | fi-1s1(50)= 2491 = 4753 D ( 50, -9) n=50+ 47k n=50+ 53k
e | fisa(57)= 3233 = 5361 E ( 57,-16) n=57+ 53k n=57+ 61k
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7. Prime spirals with more segments.

The segmented prime spiral consists of segments of sequential natural numbers, who together with the other segments
form a continuous spiral of natural numbers. The counterclockwise Ulam spiral with startvalue 0, named after Stanislaw
Ulam in 1963, is a special seqgential prime spiral with four segments. The Ulam spiral is a four-quarter spiral, and thus a
prime spiral with four segments. Prime spirals with one, two or three segments can be visualized als partial Ulam spirals.
In the segmented prime spirals the prime numbers have the tendency to line up along specific odd diagonals, while other
odd diagonals hardly contain any prime numbers.

There are infinitely many segmented prime spirals. Fig. 2.1. shows an example of a counterclockwise prime spiral with
five segments, while fig. 7.1. is a visualisation of a prime spiral with six segments.
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The prime spiral with six segments (fig. 7.1) becomes a continuous spiral (see fig. 7.2) when the prime spiral is presented
as a hexagram. There is now a seemingly seamless transition from the function fss.(n) = 6n* + 6n + ¢ with ce Z, into

the function f;_¢.(n) = 6n* —6n+c with ce Z".
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Fig. 7.2: A hexagram representation of a contiuous prime spiral with six segments.
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8. Practical use of the segmented prime spirals.

The counterclockwise prime spiral with startvalue 0 and m segments is fully defined by the (2m + 1) families of
quadratic functions f,;.(n) = an® + bn + ¢, with ne No, me N, a=m, —a<b<a with be Z, and

ce Z; if b=a
ce 7 if —a<b<a
ce Z° if b=-a
For b =a the function f,,.(n) = an® + bn + ¢ becomes Japen) = an’ +an + c.

The translation n > n — 1 then gives the function f,,.(n) = an* —an + ¢ and thus f,,.(n) = an’ — bn + c.
The functions f,, (n) = an® +bn + ¢ and Sapen) = an®* = bn +c give equal results, but for the translation n > n — 1.

The definition of the families of functions within each of the infinitely many segmented prime spirals, makes it possible
to identify specific quadratic functions that have a high ratio of prime numbers.

Euler's famous formula n* — n + 41 corresponds with the function fi _; 4;(nsg) = 1n* = 1n+41. Up to f(n) = 10"9 this
function has a prime number ratio of 0.3590, see the table below. The function shows up as f(n) = n” + 41n + 461 in
the Ulam one-quarter spiral as depicted in fig. 6.2, due to the translation n > n + 21.

So far, for f,,.(n) upto 1079 and |c|<400, the highest prime number ratio is found for the function f;_;99(72nE)
which appears as f(n) = 2n> + 400n + 19801 in the Ulam two-quarter spiral.

a b c total primes ratio

1 -1 41 31624 11356 0.3590...
17 31624 7178 0.2269...

2 0 -199 22 361 8 868 0.3965...
29 22 361 7 190 0.3215...

2 -2 127 22 361 7397 0.3307...
3 3 -199 18 257 6741 0.3692...
4 4 -397 15811 6242 0.3947...
2 41 15 812 5726 0.3621...

5 5 -167 14 142 4522 0.3197...
5 -5 79 14 143 4638 0.3279...
6 6 31 12911 4 862 0.3766...
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