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Analyzing segmented prime spirals. 
 

1.  Abstract. 
 

The Ulam spiral is a prime spiral with  four  segments. The prime spiral with just  one  segment is analyzed to better 

understand the difference in density of prime numbers along horizontal, vertical and diagonal lines in the Ulam spiral  

 

2.  Families of functions in the segmented prime spirals. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 1:  The  four  segments in the counterclockwise Ulam spiral. 

 

 

Counterclockwise prime spirals with startvalue  0  and  m  segments are fully defined by the  (2m + 1)  families of 

quadratic functions   fa,b,c(n) = an
2
 + bn + c,  with  n ∈ N0,  m ∈ N,   a = m,  −a ≤ b ≤ a  with  b ∈ Z ,  and   

 c ∈ −

0Z  if  b = a 

 c ∈ Z  if  −a < b < a 

 c ∈ +
Z  if  b = −a 
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3.  Prime spiral with one segment. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 2:  The counterclockwise prime spiral with  one  segment. 

 

 

For the prime spiral with  one segment  the  families of functions  are defined by  f1,b,c(n) = 1n
2
 + bn + c  with  −a ≤ b ≤ a.  

When using the compass rose the value of  b  is synonymous to the winddirection.  

The function  f1,−1,c(n) = 1n
2
 − 1n + c  thus becomes  f1,c(nSE) = 1n

2
 − 1n + c. 

 

Fig. 2 shows part of the infinitely large counterclockwise prime spiral with  one segment.  Based one the  E-sector of 

the counterclockwise  Ulam spiral  (fig. 1)  the natural numbers on the seams are duplicated.  

So, elements of  f1,0(nNE) = 1n
2
 + 1n + 0  also appear as elements of  f1,0(nSE) = 1n

2
 − 1n + 0.   

Note that the latter function does not comply with the definition of the families of functions, since  c ∉ +
Z   (see above). 

 

Almost each function  f1,b,c(n) = 1n
2
 + bn + c  appears as a horizontal, vertical or diagonal line only at a higher  n.   

For instance the sequence  {41, 53, 67, 83, 101, ...}  of the function  f1,11(nSE) = n
2
 − n + 11  starts at  n = 6  and thus as 

part of the function  f(n) = n
2
 + 11n + 41.  The function appears to be rich with prime numbers. 

This function is not related to  f1,41(nSE) = n
2
 − n + 41,  Euler's  most famous  prime number generator. 
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3.  The role of prime number divisors. 
 

A function value  f (n)  is composite if   f (n) =  dA • dB  with  dx │ f (n),  gcd (f (n), dx) > 1  ∀dx ∈ {dA, dB}  

If  dA  is a divisor, then  dA │ f (n + dA • k)  and  dB(m) =  f (n + dA • k) / dA  with  k ∈ N0.   

Also if  dB  is a divisor, then  dB │ f (n + dB • k)  and  dA(k) =  f (n + dB • k) / dB.   

 

Given: 

 dA │ f1,b,c(n) = 1n
2
 + bn + c    

For  n a  n + k  with  k ∈ N0  the families of functions   

f1,b,c(n) = 1n
2
 + bn + c  become   

f1,b,c(n) = 1n
2
 + bn + c + k

2
 + k (2n + b) 

Thus  dA │ n
2
 + bn + c + k

2
 + k (2n + b)  when  dA │ k

2
 + k (2n + b) 

And for  c a  c + m  with  m ∈ Z  the families of functions   

f1,b,c(n) = 1n
2
 + bn + c  become   

f1,b,c(n) = 1n
2
 + bn + c + m 

Thus  dA │ 1n
2
 + bn + c + m  when  dA │ m 

 

The divisor  dA = 2  eliminates all  even  natural numbers as possible prime number. Only  odd  natural numbers could 

be  prime numbers, but for  p1 = 2.  See fig. 3  below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 3:  Prime spiral with one segment:  eliminating multiples of  p1 = 2. 
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 Fig. 4:  Prime spiral with one segment:  eliminating multiples of  p1 = 2  through  p2 = 3. 

 

 

The divisor  dA = 3  eliminates all natural numbers with  gcd( f (n), 3) > 1  as possible prime number, but for  p2 = 3. 

Given: 

   dA = 3  and   dA │ f1,c(nSE)  with  f1,c(nSE) = 1n
2
 − 1n + c  and  c > 0  (c = 0  is part of   f1,c(nNE) = 1n

2
 + 1n + c) 

Then for  k ∈ N0  and  m ∈ N0: 

 dA │ f1,c(nSE)  for  nSE = (1 + dA • k)  and  c = 3 + dA • m  or 

 dA │ f1,c(nSE)  for  nSE = (2 + dA • k)  and  c = 3 + dA • m  ( c = 3 + dA • 2m  will suffice, due to  odd/even numbers). 

Thus: 

 when  3 │ f1,c(nSE)  only  one-third  of the  natural numbers  could be  prime numbers. 

 

Also, given: 

   dA = 3  and   dA │ f1,c(nNE)  with   f1,c(nNE) = 1n
2
 + 1n + c  and  c ≤ 0 

Then for  k ∈ N0  and  m ∈ N0: 

 dA │ f1,c(nNE)  for  nNE = (2 + dA • k)  and  c = −3 − dA • m  or 

 dA │ f1,c(nNE)  for  nNE = (3 + dA • k)  and  c = −3 − dA • m  ( c = −3 − dA • 2m  will suffice, due to  odd/even numbers). 

Thus: 

 when  3│ f1,c(nNE)  only  one-third  of the  natural numbers  could be  prime numbers. 
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 Fig. 5:  Prime spiral with one segment:  eliminating multiples of  p1 = 2  through  p4 = 7. 

 

 

Fig. 5  shows distinct patterns of (possible) prime numbers when all  natural numbers  with  gcd( f(n), p4#) >1  are removed. 

The  NE diagonals  are further hindered by  special factorable functions  f1,c(nE) = 1n
2
 − 0n + c  with  c = −k

2
  and  k ∈ N,  

like  f1,0(nE) = 1n
2
 − 0n − 0  and  f1,−1(nE) = 1n

2
 − 0n − 1. 

 

Fig. 6a  and  6b  show the  proportion  of prime numbers up to  f(n) = 10
9
  on several  NE  and  SE diagonals. 
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 Fig. 6a:  Prime number density on  NE diagonals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 6b:  Prime number density on  SE diagonals. 

 

 

 

 

 

 

 


